

For more information, please contact the following offices.

Chubu branch office Nagoya Branch TEL+81-52-509-5211

TEL+81-59-213-5980

NIPPON THERMOENER CO., LTD. Headquarters: 3-2-10 (Shirokanedal Building), Shirokanedal, Miritato-Au, Tokyo 108-0071 Japan Tel: +81-3-6408-8251 (switchboard number) Fax: +81-3-6408-8278

Yokohama branch TEL+81-45-948-3911

Atsugi sales office

Utsunomiya sales office TEL+81-28-613-0331

TEL+81-27-350-7230 Mie sales office Matsumoto sales office TEL+81-263-48-3815 Hokuriku branch

Takasaki branch

Nagano sales office TEL+81-26-286-0341

Niigata branch

ma salas offica Hokkaido branch Sapporo Branch TEL+81-24-990-1852 TEL+81-11-789-5281 Morioka branch
 TEL+81-19-635-3366
 TEL+81-19-635-3366

 TEL+81-19-635-3366
 TEL+81-42-6221-1911

 TEL+81-16-21-5770
 Akita sales office
 Chiba branch

 Kushiro sales office
 TEL+81-18-887-5630
 TEL+81-43-235-0071
 TEL+81-154-31-9211 Southern Kanto branch office Tokyo branch TEL+81-29-244-5720 Hakodate sales office TEL+81-138-87-5001 TEL+81-3-6408-8260 Tsukuba sales office
 Tachikawa sales office
 TEL+81-29-833-615
 TEL+81-29-833-615

 TEL+81-42-535-8701
 Northern Kanto branch office
 Nagaoka sales office

 Yamanashi sales office
 Saltama Branch
 TEL+81-258-20-5202
 Tohoku branch office Sendai Branch TEL+81-22-244-5181 Yamanashi sales office
 Yamagata sales office
 TEL+81-55-242-2570
 TEL+81-48-660-2331

 TEL+81-23-629-7378
 TEL+81-48-660-2331
 TEL+81-48-660-2331

AFFILIATES

NTEC Chemical CO., LTD. NTEC Engineering CO., LTD. NTEC Service CO., LTD. NIPPON THERMOENER (THAILAND) CO., LTD. TEL+66-(0)2-653-0660

TEL+81-76-223-40 Toyama sales office TEL+81-76-421-11	Himeji salles office	Yamaguchi salles office
Shizuoka branch TEL+81-54-245-02	Minami-Osaka bran 53 TEL+81-72-226-51	
Hamamatsu sales o TEL+81-53-464-02		TEL+81-92-711-1511 41 Kitakyushu sales office TEL+81-93-963-5550

Kansal branch office Osaka Branch

TEL+81-6-6488-2233

Takamatsu sales office TEL+81-87-864-5755

Kobe branch

Chugoku branch Chugoku Branch

TEL+81-82-503-1606

TEL+81-86-800-7700

Okavama sales office

Sanin sales office

 Oita sales office
 Kyoto plant

 TEL+81-97-554-2322
 TEL+81-75-935-2500
 Kumamoto sales office Kanto plant TEL+81-96-328-9811 TEL+81-29-833-6110 Kagoshima sales office TEL+81-99-255-3801

ISO 9001 certified QA-QMA14830 ISO 14001 certified JQA-EM0253 • Please note that the descriptions are subject to change without prior notice.

K0A0205E 2022.03R

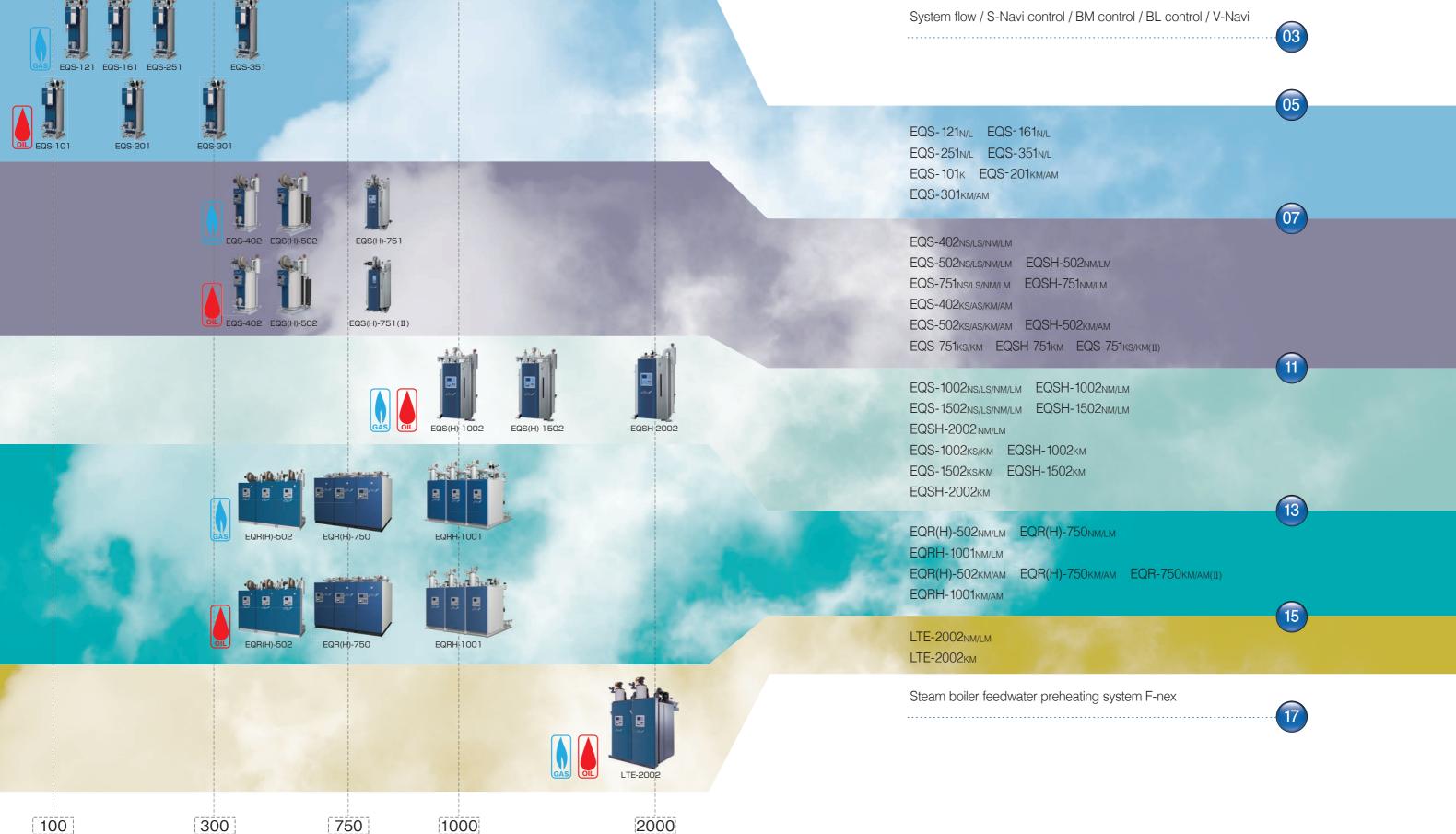
EQOS Steam Boiler

Oil fired EQS (H) Series / EQR (H) Series / LTE Series

Gas fired EQS (H) Series / EQR (H) Series / LTE Series

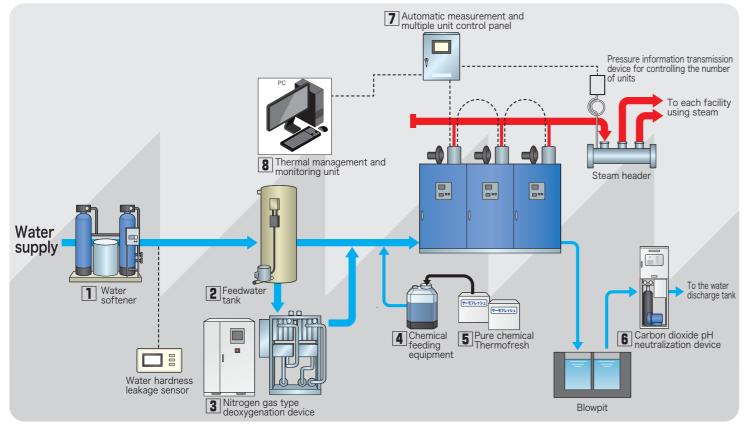
NIPPON THERMOENER CO., LTD.

Once-through Boiler Series


Gas fired

Oil fired

EQOS Steam Boiler Series


CONTENTS

System flow (example)

1 Water softener

This device thoroughly removes substances in raw water that increase the water hardness and cause scale to adhere to the boiler without troubling users. The high-performance water hardness leakage sensor strengthens reliability by regularly checking the water hardness when water is passed and immediately switching the water softener to another one if water hardness leakage is detected. Adopting a regeneration method based on the accumulated water passing amount that is measured by a built-in water flow gauge, this water softener fully utilizes its capacity and eliminates waste of regeneration salt.

2 Feedwater tank

Feedwater deaeration and boiler water supply are automated. Of course, an opening for drain recovery is provided and can be used together. The tank is made of stainless steel, which is resistant to rust. A reliable steam silencer incorporated inside the tank ensures silent and reliable deaeration. Feedwater has an extremely low content of dissolved oxygen, which realizes a longer life of the boiler and requires less amount of chemicals to be injected

4 Chemical feeding equipment

By injecting a water treatment chemical (Thermo Fresh), this device treats scale and a slight amount of substances increasing the water hardness that cannot be treated by the water softener.

5 Pure chemical Thermofresh

Developed based on our many years' experience and accumulated data, this pure chemical for (simplified / compact / large) once-through boilers prevents various failures and troubles caused by water and supports their stable operation for a long period of time.

6 Carbon dioxide pH neutralization device

Delivers superior performance in pH treatment of boiler blow-down water. A proprietary technique of controlling the inside of the pipe provides a high mixing rate, and easy operations and maintenance are realized. In addition, this space-saving device can easily be installed both indoors and outdoors. With the static mixer, thorough mixing and stirring inside the sealed pipe have been enabled.

7 Automatic measurement and multiple unit control panel

For multiple boilers, this device properly controls operation of each boiler according to the steam load.

8 Thermal management and monitoring unit

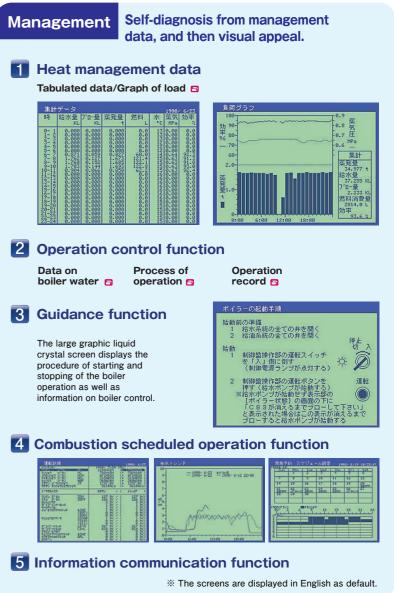
In combination with the automatic measurement and multiple unit control panel, it provides high-class consolidated boiler management.

音目室

C : :

S-Navi control / BM control / BL control / V-Navi

S-Navi control "Steaming Navi"


Efficient generation, control, management, and maintenance of steam are collectively referred to as steaming. The new navi, named Steaming Navi, serves as the advanced controller of the boiler itself, and has the functions of providing operators with appropriate boiler control information and guiding operation of the boiler. S-Navi is a control system capable of notifying information not only on boiler control but also on the boiler management in an easy-to-understand manner through simple operations.

Со	ontro		oiler itself car atic control of	n perform each function.	Ма	na
	Stea	m press	ure control f	function	1	Не
	-					Tab
				ion frequency		集計
			the frequency of star load, thereby reducir			84
			Conventional control	S-Navi (Function of reducing combustion frequency)		0
		r load ratio	40%	40%		6 00 00
		Combustion OFF	0.8MPa	0.8MPa		10-11
	setting	Combustion ON	0.65MPa	0.65MPa		134-15
		tween starting and of combustions	74 seconds/cycle	110 seconds/cycle		16-17 17-18 18-19
	Ef	fects		e frequency of starting/ be reduced to about two operation efficiency high.		19-20 20-21 221-22 222-23 23-24
2	Purg	ing stan	dby operati	S-Navi	2	Op Data
			Conventional control	(Purging standby operation)		boil
		r load ratio	40%	40%		
	Pressure setting	Combustion OFF	0.8MPa 0.65MPa	0.8MPa		~
	Pressure du	ring re-combustion	0.55MPa 0.57MPa (0.08MPa)	0.65MPa 0.62MPa (0.03MPa)	3	Gu
	<u> </u>	Effects		mproved about 60% and		The cryst
			(Result of the	test for our small boilers)		proc
						stop
	A	ir warm	ing start fun	ction		oper
3	Press	sure ba	ckup functio	on		infor
	Pressu	re keeping	function			
				n stop state to be set ount control is in place.	4	Cor
	The load (0pt.ROM	following cap I is required f	ability is remarkably or the unit count count count count count count ing and cancellation i	enhanced. trol panel.)		
4	Boile	r water	control fund	ction		学校の

5 Multi-interlock function

Double or triple safety devices are provided for three safety elements of boilers : steam pressure, water level/overheat prevention, and combustion.

Mounting the new highly functional "V-Navi"

The LED with backlighting and white outline letters improved the visibility.

Additional contents on the display: Control conditions, error history, and maintenance information are added

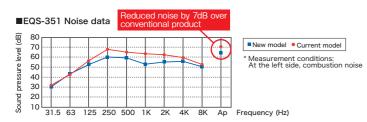
Hieratical selection display: Items and parameters are displayed hieratically to improve operability Multiple remote controllers: Installation of multiple remote controllers for a single boiler is enabled Schedule reservation function: Operation/stoppage on the registered days of week and times is enabled Boiler water control function: Automatic basic input of the boiler compound. Operation data recording function: Operating hours, the number of times of operation, operation progress. error history

Communication function: Connection for remote monitoring is enabled

3 Nitrogen gas type deoxygenation device Utilizes a method to blow in nitrogen gas

into the water and remove other gases. When water contacts nitrogen gas, dissolved oxygen in the water moves to air bubbles of the nitrogen gas that have a lower oxygen partial pressure. By discharging the air bubbles that have taken in the dissolved oxygen to the air, oxygen is removed in this technique.

The next-generation Navi performs control and management of the boiler.


EQOS **EQS** Series

Gas fired EQS-121N/L EQS-161N/L EQS-251N/L EQS-351N/L Oil fired EQS-101K EQS-201KM/AM EQS-301KM/AM

Silence design and low NOx friendly to the ambient environment

Comfortable silence design Gas fired Oil fired (7dB less than conventional product)

More silent by 5dB than our conventional product. The new type intake silencer has reduced the sound from the blower that makes the largest noise. Night-time or early-morning operation can be performed without worry.

Low NOx Gas fired

[Converted based on 50ppm or less ($O_2 = 0\%$) in the case of LNG Specification]

Low NOx Oil fired

[Converted based on 70ppm or less ($O_2 = 0\%$) in the case of EQS-101K type]

Low CO Oil fired [Carbon monoxide (CO) 100ppm or less]

Low soot and dust Oil fired

High-performance, safe, secure, and user-friendly

Stable supply of high-quality steam

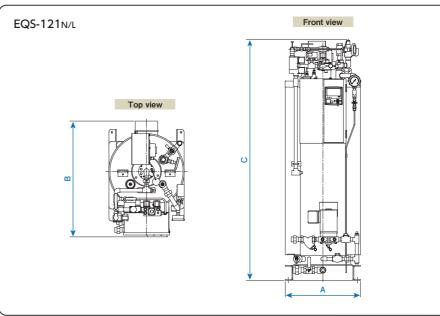
Steam dryness 99% or more

High performance steam separator built in main body, which NTEC boasts, is adopted. Compared with the product with an external steam-water separator, this boiler enables reduction of heat release and excellent effective use of energy.

The double low water-level sensors are built in the body to secure safety in the event of an emergency

Use of the body temperature sensor can prevent heating of an empty boiler

The new type high functional microcomputer "V-Navi" (Value Navi) is incorporated


Specifications

Item			Type*1	EQS-101 🗆	EQS-121 🗆	EQS-161 🗆	EQS-201 🗆	EQS-251 🗆	EQS-301 🗆	EQS-351 🗆
	Conversion evaporation Actual evaporation		lum (h	100	120	160	200	250	300	350
			kg/h	84	101	134	168	210	251	293
		Thermal output	kW	63	75	100	125	157	188	219
	He	eating surface area	m²	2.	39	2.74	3.08	3.76	3.81	4.71
1	Maxi	imum working pressure	MPa		0.69			0.	98	
	Hol	lding water quantity	L	3	33	37	42	5	51	65
		Boiler efficiency	%				90			
	Max o	combustion capacity (input)	kW	70	84	111	139	174	209	244
e		LNG	m³(N)/h	—	7.4	9.9	—	15.4	—	21.6
man	ion	Propane	m³(N)/h	—	3.2	4.3	_	6.7	—	9.4
Performance	mpt	Topune	kg/h	_	6.5	8.6	—	13.5	_	18.9
Pe	Fuel consumption	Kerosine	kg/h	5.8	_	_	11.5	—	17.3	_
			L/h	7.2	_	—	14.4	—	21.6	—
		Fuel oil A	kg/h	—	_	_	11.7	_	17.6	
		Tucton A	L/h	—	_	_	13.7	—	20.5	—
		Power source				Three p	phase, AC 200V, 5	0/60Hz		
		cility electric power		0.4 0.75				0.95		
	- items	Feedwater pump motor	kW	0.2			0.4			
	;	Blower motor	NVV		0.1		0.25		0.45	
	Sub	Control box		0.1						
<u>ب</u>		Fuel inlet			1	5		25	15	25
nete		Feedwater inlet	А				20			
diar		Steam outlet				20			2	5
pipe diameter	Safet	ty valve discharge outlet				20 (40)			25	(50)
٩	E	xhaust gas outlet	φmm		150			2	00	
	Pre	oduct weight	kg	240	235	260	300	365	350	470

Notes: 1. The actual evaporation is the value for the saturated steam at 15°C feedwater temperature and 0.49MPa steam pressure. 2. The boiler efficiency value is calculated by the heat loss scheme provided in JIS B 8222-1993. However, the calculation is made

- under the following conditions. 0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature
- 3. The margins of error are as follows: Boiler efficiency error: ±2%
- Combustion capacity error: ±3.5%
- 4. The fuel consumptions are calculated based on the following fuel lower calorific values LNG: 40.6MJ/m³ (N) Fuel oil A: 42.7MJ/kg, density 0.86g/cm³
- LNG: 40.0MJ/m³ (N) Fuel oil A: 42./MJ/kg, density 0.80g/cm³ Propane: 93.7MJ/m³ (N), 46.4MJ/kg Kerosine: 43.5MJ/kg, density 0.80g/cm³ 5. As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used.
- 6. Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, stopped, or other gas equipment is being operated. Supply gas pressure LNG: 2.0kPa Propane: 2.8kPa
- If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation.
 The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors.
- Only EQS-101, 121, and 161 support single-phase AC 100V, 50/60Hz as an option.
 Maximum combustion capacity (input) is computed based on the standard lower calorific value.
- 11. For EQS-101K, a low NOx burner specification ($O_2 = 0$ % conversion value: 70 ppm or less) is applied. 12. In the case of LNG, low NOx burner specification ($O_2 = 0$ % conversion value : 50ppm or less) is applied.

External dimensional drawing

* The external outline drawing is for reference.

*1. The type display is as follows

......M: Microcomputer specification (V-Navi control) EQS-121

···N: LNG L: Propane K: Kerosine

A: Fuel oil A

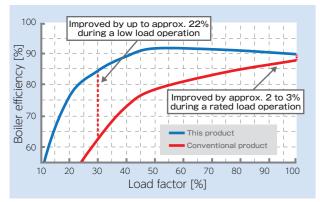
			Unit: mm
Туре	A Overall width	B Overall length	C Overall height
EQS-101 K	505	760	1,635
EQS-201 KM/AM	585	860	1,705
EQS-301 KM/AM	655	920	1,710
EQS-121 N/L	505	770	1,600
EQS-161 N/L	540	800	1,600
EQS-251 N/L	670	925	1,710
EQS-351 N/L	765	1,030	1,710

EQOS **EQS** Series

Gas fired EQS-402NS/LS/NM/LM EQS-502NS/LS/NM/LM EQSH-502NM/LM Oil fired EQS-402KS/AS/KM/AM

EQS-502KS/AS/KM/AM EQSH-502KM/AM

Upgraded boiler body and burner improve rated and partial load efficiencies


EQS 402 type: **91%** Gas fired Oil fired 502 type: **90%**

Suppresses energy loss during operation, and improves its efficiency with the economizer

EQSH (with the economizer) 97% [Gas fired Oil fired]

Adopted the three-level control for the combustion control method of the standard model and improved the actual load efficiency

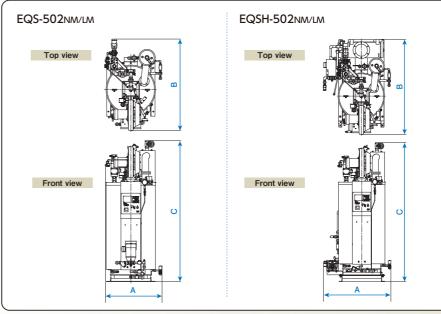
The standard model uses the V-Navi control panel, which realizes higher performance.

Reduces burden to the environment with the low NOx burner

NOx value LNG 50ppm or less Gas fired (O2=0% conversion value)

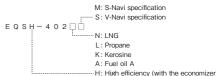
Package with a simple and compact design that also offers maintainability

With a compact design that enables the equipment to be disassembled and carried through a narrow door, the package has a simple external appearance and improved the ease of maintenance work.


Specifications

Item			Type*1	EQS-402	EQS-502 🗆	EQSH-502			
	Con	version evaporation	1 4	400		500			
	A	ctual evaporation	kg/h	335		419			
		Thermal output	kW	251 313					
	He	eating surface area	m²		4.97				
	Maximum working pressure MPa		MPa		0.98				
	Holding water quantity L		L		79				
		Boiler efficiency	%	91	90	97			
	Max o	combustion capacity (input)	kW	276	348	323			
ac		LNG	m³ (N) /h	24.4	30.9	28.7			
Performance	tion	Propane	m³ (N) /h	10.6	13.4	12.4			
rfor	d L	E Flopalle	kg/h	21.4	27.0	25.1			
Pe	Propane Propane Kerosine	kg/h	22.8	28.8	26.7				
	CO		L/h	28.5	36.0	33.4			
	Fuel	Fuel oil A	kg/h	23.2	29.4	27.2			
			L/h	27.0	34.2	31.7			
		Power source		Three phase, AC 200V, 50/60Hz					
	Fac	cility electric power		1.6					
	ems	Feedwater pump motor	kW	0.75					
	Sub - items	Blower motor			0.75				
		Control box			0.1				
ъ		Fuel inlet			40 (15)* ²				
mel	L	Feedwater inlet	А		20				
Connecting pipe diameter		Steam outlet			32				
j Co	Safet	ty valve discharge outlet			25 (50)				
0	E	xhaust gas outlet	\$\$\$		200	1			
цчы	<u> </u>	NS/LS			10				
Product weight		NM/LM	kg	-	20	835			
Pro	<u> </u>	KS/KS	Ū		90	-			
		KM/KM		60	00	820			

Notes: 1. The actual evaporation is the value for the saturated steam at 15°C feedwater temperature and 0.49MPa steam pressure. 2. The boiler efficiency value is calculated by the heat loss scheme provided in JIS B 8222-1993. However, the calculation is made under the following conditions.


- 0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature
- 3. The margins of error are as follows:
- Boiler efficiency error: ±1%
 Combustion capacity error: ±3.5%
 The fuel consumptions are calculated based on the following fuel lower calorific values:
- LNG: 40.6MJ/m³ (N) Fuel oil A: 42.7MJ/kg, density 0.86g/cm³ Propane: 93.7MJ/m³ (N), 46.4MJ/kg Kerosine: 43.5MJ/kg, density 0.80g/cm³
- As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used.
- Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, stopped, or other gas equipment is being operated.
- Supply gas pressure LNG: 2.0kPa Propane: 2.8kPa 7. EQSH-series boilers come with an economizer. Be sure to set the feedwater temperature to 50°C or higher.
- 8. If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation 9. The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors.
- 10. Maximum combustion capacity (input) is computed based on the standard lower calorific value. 11. In the case of LNG, low NOx burner specification ($O_2 = 0\%$ conversion value : 50ppm or less) is applied.

External dimensional drawing

* The external outline drawing is for reference.

*1. The type display is as follows

None: Standard *2. Values of the fuel outlet shown inside the () are for the oil fired (Kerosine / Fue oil A) type boilers

			Unit. mm
Туре	A Overall width	B Overall length	C Overall height
EQS-402 · 502KS/AS	745	1,190	2,135
EQS-402 • 502KM/AM	845	1,205	2,135
EQSH-502KM/AM	1,085	1,505	2,235
EQS-402 · 502NS/LS	765	1,385	2,135
EQS-402 • 502NM/LM	865	1,385	2,135
EQSH-502NM/LM	1,085	1,505	2,235

EQOS **EQS** Series

Gas fired EQS-751NS/LS/NM/LM EQSH-751NM/LM Oil fired EQS-751KS/KM

EQSH-751KM EQS-751KS/KM (II)

Suppresses energy loss during operation, and improves its efficiency with the economizer

96% Gas fired EQSH (with the economizer) 95% Oil fired

Adoption of the high performance steam-water separator ensures stable supply of high quality steam

Steam dryness 99% or more

Adopts the high performance steam separator incorporated in the main body

The unique combustion system delivers excellent environment performance

NOx value LNG 60ppm or less is realized! [Gas fired] (0₂=0% conversion value)

Adopts a layout and design improving safety and maintainability

The front covering panel is mounted to satisfy both safety and maintenance and also realize a simple outer design

EQS-751

Specifications

Item		Type ^{*1}	EQS-751 🗆	EQS-751K □ (Ⅱ)	EQSH-751 🗆		
(Conversion evaporation	lum (h	750	712 (675)*2	750		
	Actual evaporation	kg/h	629	597 (566)* ²	629		
	Thermal output	kW	470	446 (423) ^{*2}	470		
	Heating surface area m ²		7.69				
N	Aaximum working pressure	MPa		0.98			
	Holding water quantity	L		99			
	Boiler efficiency	%	8	8	96 (95) ^{*3}		
N	lax combustion capacity (input)	kW	534	507 (481)* ²	490 (495) ^{*3}		
	LNG	m³ (N) /h	47.4	—	43.4		
lce		m³ (N) /h	20.5		18.8		
Performance		kg/h	41.5		38.0		
for	Butane	m³ (N) /h	16.2	—	14.8		
Pe	Butane	kg/h	42.1	—	38.6		
	S Kerosine	kg/h	44.2	39.8	41.0		
		L/h	55.3	49.8	51.2		
	Fuel oil A	kg/h	45.0	42.8	41.7		
	Fuel Oil A	L/h	52.4	49.8	48.6		
	Power source		Three phase, AC 200V, 50/60Hz				
	Facility electric power		3.2				
	ទ្រ Feedwater pump motor	kW		1.5			
4	Elower motor	NVV		1.5			
i i	Control box			0.2			
" P	Fuel inlet			50 (20) ^{*3}			
het	Feedwater inlet	A		20			
diar	Steam outlet			32			
connecting pipe diameter	afety valve discharge outlet			25 (50)			
ā	Exhaust gas outlet	φmm		256			
	NS/LS		1,190	—	_		
ight	NM/LM	kg	1,195	—	1,435		
Product weight	KS/KS(Ⅲ)	<u>^δ</u>	1,1	75	_		
	KM/KM(II)		1,1	80	1,420		

made under the following conditions.

0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature

3. The margins of error are as follows: Combustion capacity error: ±3.5%

- Boiler efficiency error: ±1% The fuel consumptions are calculated based on the following fuel lower calorific values LNG: 40.6MJ/m³ (N) Fuel oil A: 42.7MJ/kg, density 0.86g/cm³
- Propane: 93.7MJ/m³ (N), 46.4MJ/kg Kerosine: 43.5MJ/kg, density 0.80g/cm³ Butane: 118.9MJ/m³ (N), 45.7MJ/kg
- As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used.
- 6. Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, stopped, or other gas equipment is being operated.
- Supply gas pressure LNG: 2.0kPa Propane/Butane: 2.8kPa 7. EQSH-series boilers come with an economizer. Be sure to set the feedwater temperature to 50°C or higher.
- 8. If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation.
 9. The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors.
- 10. Maximum combustion capacity (input) is computed based on the standard lower calorific value. 11. In the case of LNG, low NOx burner specification ($O_2 = 0\%$ conversion value : 60ppm or less) is applied.

External dimensional drawing

* The external outline drawing is for reference.

M: S-Navi specification ·· S: Semi-microcomputer specification (BM control EQSH-751 ---- N : I NG L: Propane/Butane K: Kerosine/Fuel oil A - H: High efficiency (with the economizer) None: Standard

*2. Values inside the { } for the evaporation amounts, calorific value, and maximum combustion capacity (input) are for the Kerosine fired type boilers. *3. Values inside the { } for the boiler efficiency, maximum combustion capacity

(input), and fuel inlet are for the oil fired (Kerosine / Fuel oil A) type boilers

Туре	A Overall width	B Overall length	C Overall height
EQS-751KS⋅KS (Ⅱ)	1,090	1,620	2,223
EQS-751KM · KM (II)	1,130	1,635	2,223
EQSH-751KM/NM/LM	1,325	1,995	2,323
EQS-751NS/LS	1,195	1,620	2,223
EQS-751NM/LM	1,235	1,635	2,223

Unit: mm

Gas fired EQS-1002NS/LS/NM/LM EQSH-1002NM/LM Oil fired EQS-1002KS/KM EQSH-1002KM

EQS-1502NS/LS/NM/LM EQSH-1502NM/LM EQS-1502KS/KM EQSH-1502KM

EQSH-2002NM/LM

EQSH-2002KM

Suppresses energy loss during operation, and improves its efficiency with the economizer

96% Gas fired EQSH (with the economizer) 95% Oil fired

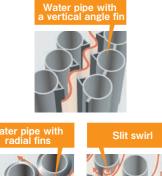
Adoption of the high performance steam-water separator ensures stable supply of high quality steam

Steam dryness 99% or more

Adopts the high performance steam separator incorporated in the main body

The unique combustion system delivers excellent environment performance

NOx value LNG 60ppm or less is realized! [Gas fired] (0₂=0% conversion value)


Adoption of hybrid heat exchange body

The heat exchange at the convection heating portion of the body has been thoroughly analyzed.

The optimum combination of 3 kinds of fins and slit swirl has accomplished highly efficient body.

High-speed combustion gases vigorously generate vortexes between the water pipes, thus enhancing the heat transfer effect and producing the self-cleaning effect for preventing adhesion and growth of soot.

The new body has realized both improved high heat transfer efficiency and durability/safety.

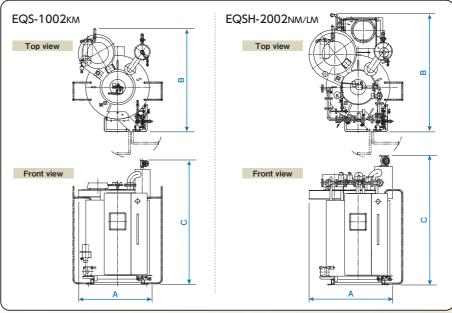
EQS-1502

Specifications

Item			Type*1	EQS-1002	EQSH-1002 🗆	EQS-1502 🗆	EQSH-1502 🗆	EQSH-2002 🗆	
	Con	version evaporation	lum (h	1,(000	1,5	500	2,000	
	A	Actual evaporation kg/h		838		1,257		1,676	
		Thermal output	kW	6	27	94	40	1,254	
	Heating surface area m ²				9.96				
	Maxi	mum working pressure	MPa			0.98			
	Hol	ding water quantity	L	1	80	16	50	150	
		Boiler efficiency	%	90	96 (95) ^{*2}	90	96 (95) ^{*2}	96 (95) ^{*2}	
	Max o	combustion capacity (input)	kW	697	653 (660)*2	1,045	980 (990)* ²	1,306 (1,320)*2	
		LNG	m³ (N) /h	61.8	57.9	92.7	86.9	115.8	
e	-	Dronono	m³ (N) /h	26.8	25.1	40.1	37.6	50.2	
erformance	consumption	Propane	kg/h	54.0	50.7	81.1	76.0	101.3	
r.	d L	Butane	m³ (N) /h	21.1	19.8	31.6	29.7	39.5	
erfo	nsu	Butane	kg/h	54.9	51.4	82.3	77.2	102.9	
ď,	Kerosine	kg/h	57.7	54.6	86.5	81.9	109.2		
		L/h	72.1	68.3	108.1	102.4	136.5		
	"	Fuel oil A	kg/h	58.7	55.6	88.1	83.5	111.3	
		Fuel Oil A	L/h	68.3	64.7	102.5	97.1	129.5	
		Power source			Three phase, AC 200V, 50/60Hz				
	Fac	cility electric power		3.9 (4.1)**2		7.9 (8	3.3) ^{*2}	10.3 (10.7)*2	
	su	Feedwater pump motor		1.5		2.2		3.1	
	- items	Blower motor	kW		.2		.5	7.0	
	à	Fuel oil burning pump motor		(0.	2)*2	(0.4	4) * ²	(0.4)*2	
	Sub	Control box				0.2			
pe		Fuel inlet		50[40](15)*2	40[50]](15) ^{*2}	40 (20)*2	
re p		Feedwater inlet	А		2	5		32	
Connecting pipe diameter		Steam outlet	A	4	10	5	0	65	
dia	Safet	ty valve discharge outlet			32	(65)		40 (80)	
3	E	xhaust gas outlet	φmm	2	56	30)6	380	
. L		NS/LS		1,615	-	1,785	_	-	
ght		NM/LM	ka	1,625	1,850	1,795	2,105	2,210	
Product weight		KS/KS	kg	1,590	-	1,720	_	-	
		KM/KM		1,600	1,835	1,730	2,040	2,160	

1. The actual evaporation is the value for the saturated steam at 15°C feedwater temperature and 0.49MPa steam pressure. 2. The boiler efficiency value is calculated by the heat loss scheme provided in JIS B 8222-1993. However, the calculation

- is made under the following conditions. 0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature 3. The margins of error are as follows:


- 3. The margins of error are as follows:
 Combustion capacity error: ±3.5%

 4. The fuel consumptions are calculated based on the following fuel lower calorific values:
 LNG: 40.6MJ/m² (N)

 Fuel oil A: 42.7MJ/kg, density 0.80g/cm³
 Propane: 93.7MJ/m² (N), 46.4MJ/kg

 Butane: 118.9MJ/m³ (N), 45.7MJ/kg
 Kerosine: 43.5MJ/kg, density 0.80g/cm³
- 5. As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used.
- 6. Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, stopped, or other gas equipment is being operated.
 Supply gas pressure
- 1002 type: Low-pressure supply as standard
- 1502/2002 types: Medium-pressure supply as standard (intermediate-pressure supply for 1.502 type is supported as an option 7. EQSH-series boilers come with an economizer. Be sure to set the feedwater temperature to 50°C or higher.
- If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation.
 The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors.
 Dimension values inside the [] of the fuel inlet are those when the supply gas pressure is medium for the 1002 type and intermediate for the 1502 type.
- - 11. Maximum combustion capacity (input) is computed based on the standard lower calorific value. 12. In the case of LNG, low NOx burner specification ($O_2 = 0\%$ conversion value : 60ppm or less) is applied. Note that the EQS-1502NM type with intermediate pressure supply is excluded.

External dimensional drawing

* The external outline drawing is for reference.

*1. The type display is as follow

M: Microcomputer specification (S-Navi control ···S: Semi-microcomputer specification (BL contro EQSH-1502

----N: I NG L: Propane/Butane

K: Kerosine/Fuel oil A

H: High efficiency (with the economizer) None: Standard

*2. Values inside the () are for the oil fired (Kerosine / Fuel oil A) boilers.

Туре	A Overall width	B Overall length	C Overall height
EQS-1002ks/km/ns/ls/ NM/LM	1,366	1,933	2,316
EQSH-1002 KM/NM/LM	1,366	1,962	2,316
EQS-1502ks/km/ns/ls/ NM/lM	1,553	1,938	2,398
EQSH-1502KM/NM/LM	1,553	2,081	2,398
EQSH-2002 KM/NM/LM	1,563	2,213	2,429

Unit: mm

Gas fired	EQR (H) -502nm/lm	EQR (H) -750nm/lm	EQRH-1001NM/LM
Oil fired	EQR (H) -502KM/AM	EQR (H) -750KM/AM	EQR-750km/am(II)
	EQRH-1001KM/AM		

With a slim body enabling multiple units to be connected and installed, this simplified once-through boiler saves much more space and energy consumption

Improved the operation management capability with the highly functional microcomputer "S-Navi" (EQR-750) Higher efficiency with a new boiler body and economizer (EQR(H)-502)

Neither qualification nor inspection is required Achieves an eco-friendly low NOx feature with the unique

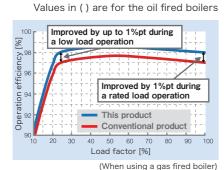
combustion method Ensures stably supply of high-quality steam whose steam

drvness is 99% or more

Equipped with a front-surface covering panel

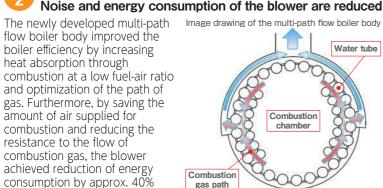
Supports various types of operations under microcomputer control

Realized a compact and slim body with the smallest width in all series


EQRH-1001 Series

The first simplified once-through boiler in the industry (1000kg/h class) that adopted the four-level combustion control. Its high efficiency largely reduced burden to the environment! [Gas fired] Oil fired

Rated load efficiency 98% (96%)


Partial load efficiency 98.6% (96.7%) (Load factor: 50%) Turndown ratio* 4:1

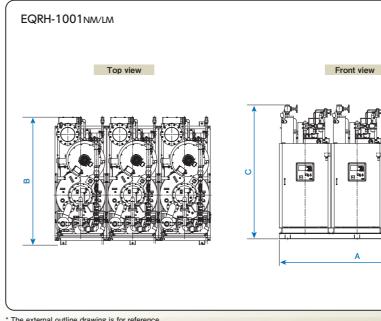
The four-level combustion control that adjusts the output in four levels of 0, 25, 50, and 100% eliminates unnecessary activations and stops of the burner and largely improves the boiler efficiency during a low load operation to save energy consumption. * The ratio between the rated output and smallest output that can be controlled. The turndown ratio of 4:1 means that the smallest output is 25% of the rated output.

Newly developed boiler body structure Noise and energy consumption of the blower are reduced

flow boiler body improved the boiler efficiency by increasing heat absorption through combustion at a low fuel-air ratio and optimization of the path of gas. Furthermore, by saving the amount of air supplied for combustion and reducing the resistance to the flow of combustion gas, the blower achieved reduction of energy consumption by approx. 40%and became more silent.

The steam dryness of 99.6% or more (when the steam pressure is 0.49MPa)

The water level control according to the steam pressure and combustion capacity ensures stable supply of dried steam in the whole range of load.


Specifications

tem			Type*1	EQR-502 🗆 M	EQRH-502 🗆 M	EQR-750 🗆 M	EQR-750□M (II)	EQRH-750 🗆 M	EQRH-1001 🗆 🛚
	Con	version evaporation	ka /h	50	00	750	650 (700)*4	750	1,000
Ī	Actual evaporation		kg/h	41	19	629	545 (587)**4	629	838
ľ	Thermal output		kW	31	13	470	408 (439)**4	470	627
[He	ating surface area	m²	4.9	97		4.	98	
[Maxir	num working pressure	MPa			0.	.98		
[Hold	ding water quantity	L	7	9		95		130
		Boiler efficiency	%	90	98 (97) * ²	90	90	96 (95)* ²	98 (96)* ²
	Max o	ombustion capacity (input)	kW	348	320 (323) ^{*2}	522	453 (488)**4	490 (495) ^{**2}	640 (653)**2
[LNG	m³ (N) /h	30.9	28.4	46.3	_	43.4	56.7
.		Propane	m³ (N) /h	13.4	12.3	20.1	—	18.8	24.6
Pertormance	io	Fiopalie	kg/h	27.0	24.8	40.5	-	38.0	49.6
Ĕ	mbt	Butane	m³ (N)/h	_	—	15.8	-	14.8	_
EII	consumption	Dutaile	kg/h	_	—	42.1	-	38.6	
-	Fuel co	Kerosine	kg/h	28.8	26.7	43.2	37.5	41.0	54.0
		Kerosine	L/h	36.0	33.4	54.0	46.8	51.2	67.6
		Fuel oil A	kg/h	29.4	27.2	44.0	41.1	41.7	55.1
		F uet oit A	L/h	34.2	31.7	51.2	47.8	48.6	64.1
[Power source				Three phase, AC 200V, 50/60Hz			
[Fac	ility electric power		1.	.6	3.2 (3.6)*2	3.6	3.2 (3.6)*2	3.9 (4.3)*2
[SL	Feedwater pump motor		0.7	75	1.5		.5	
	iten	Blower motor	kW	0.7	75		1.5		2.2
	Sub - items	Fuel oil burning pump motor	1	-	_	-(0.4)*2	0.4	- (0.4)*2	- (0.4)*2
	SL	Control box		0.	.1		0	.2	
		Fuel inlet		40 (1	5)*2	50<40>**3 (15)**2	15	50<40>**3(15)**2	50 (15)* ²
diameter	I	Feedwater inlet	Α			20			25
met		Steam outlet	A	3	2		40		50
dia	Safet	y valve discharge outlet				25 (50)			32 (65)
	Exhaust gas outlet ϕ mm		φmm	20	00		25	56	
weight		NM/LM	ka	695	920	1,020	-	1,250	1,660
vei		KM/AM	kg	675	905	1,020	1,020	1,250	1,580

under the following conditions ····N: LNG

- 0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature
- 3. The margins of error are as follows: Combustion capacity error: ±3,5% Boiler efficiency error: ±1%
- 4. The fuel consumptions are calculated based on the following fuel lower calorific values
- LNG: 40.6MJ/m³ (N) LNG: 40.6MJ/m³ (N) Fuel oil A: 42.7MJ/kg, density 0.86g/cm³ Propane: 93.7MJ/m³ (N), 46.4MJ/kg Kerosine: 43.5MJ/kg, density 0.80g/cm³
- Butane: 118.9MJ/m³ (N), 45.7MJ/kg
- 5. As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used.
- 6. Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, or other gas equipment is being operated Supply gas pressure LNG: 2.0kPa Propane/Butane: 2.8kPa
- EQRH-series boilers come with an economizer. Be sure to set the feedwater temperature to 50°C or higher.
 If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation.
- 9. The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors In the case of LNG, low NOx burner specification (O₂ = 0% conversion value : 60ppm or less) is applied. Low NOx burner specifications (O₂=0% conversion value: 50ppm or less) are applied to the LNG types of 502 types.

External dimensional drawing (When three units are connected)

* The external outline drawing is for reference

L: Propane/Butane

K: Kerosine

A: Fuel oil A

H: High efficiency (with the econo None: Standard

Unit: mm

*2. Values inside the () are for the oil fired (Kerosine / Fuel oil A) boilers.

*3. Values inside the () are for the Progare / Butane

*4. Values inside the () are for the fuel oil A type boilers

Туре	A Overall width	B Overall length	C Overall height
EQR-502NM/LM	2,660	1,445	2,235
EQR-502KM/AM	2,660	1,290	2,235
EQRH-502km/am/nm/lm	2,660	1,975	2,235
EQR-750 KM/AM(II)/NM/LM	2,410	1,700	1,832
EQRH-750 km/am/nm	2,410	2,100	1,900
EQRH-750LM	2,410	2,100	1,980
EQRH-1001 KM/AM	2,780	2,223	2,297
EQRH-1001 NM/LM	2,780	2,210	2,297

EQOS **LTE Series**

Gas fired LTE-2002NM/LM

Oil fired LTE-2002KM

Eco-friendly and highly efficient

96% Gas fired **Boiler efficiency** 95% Oil fired

High boiler efficiency during rated operation and high operation efficiency under three-level control have been realized

Adoption of the high performance steam-water separator ensures stable supply of high quality steam

Steam dryness 99% or more

Adopts high performance steam separator incorporated in the main body

Standard equipment of low NOx burner

NOx value LNG 60ppm or less is realized! [Gas fired] (O₂=0% conversion value)

Adoption of the base capable of sliding connection

The square, small footprint boiler design capable of installation of multiple boilers

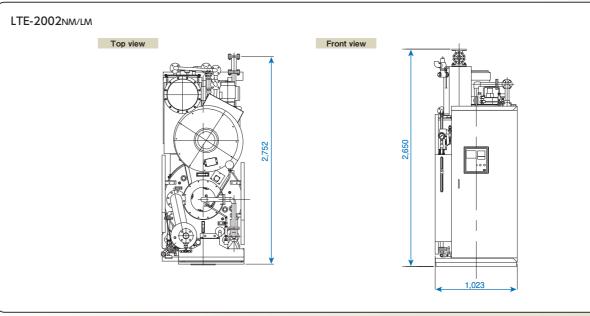
LTE-2002 NM/LM/KM is a square type boiler designed for small footprint and installation of multiple boilers, thus realizing the compact package

Specifications

Item			Туре*1	LTE-2002 🗆 M	
Performance	Conversion evaporation Actual evaporation		kg/h	2,000	
				1,676	
	Thermal output		kW	1,254	
	Heating surface area		m²	9.91	
	Maximum working pressure		MPa	0.98	
	Holding water quantity		L	150	
	Boiler efficiency		%	96 (95) ^{*2}	
	Max combustion capacity (input)		kW	1,306 (1,320)*2	
		LNG	m ³ (N)/h 115.8		
	Propane	m³ (N) /h	50.2		
		Proparie	kg/h	101.3	
Ē	Fuel consumption	Butane	m³ (N) /h	39.5	
Perfo		butane	kg/h	102.9	
	S Telefont Kerosine	kg/h	109.2		
		Kerösine	L/h	136.5	
		Fuel oil A	kg/h	111.3	
	Fuel Oil A		L/h	129.5	
	Power source			Three phase, AC 200V, 50/60Hz	
		Facility electric power		10.3 (10.7)*2	
	s	Feedwater pump motor		3.1	
	items	Blower motor	kW	7.0	
	- du2	Fuel oil burning pump motor		(0.4)**2	
	SL	Control box		0.2	
Connecting pipe diameter		Fuel inlet		40 (20) *2	
	Feedwater inlet		A	32	
	Steam outlet			65	
	Safety valve discharge outlet			40 (80)	
		Exhaust gas outlet ϕ mm		380	
Product weight	NM/LM kg		ka	2,110	
Proc			ĸg	2,065	

1. The actual evaporation is the value for the saturated steam at 15°C feedwater temperature and 0.49MPa steam pressure. 2. The boiler efficiency value is calculated by the heat loss scheme provided in JIS B 8222-1993. However, the calculation is made under the following conditions.

0.49MPa steam pressure, 15°C feedwater temperature, 35°C charge air temperature


- 3. The margins of error are as follows: Combustion capacity error: ±3,5% Boiler efficiency error: ±1%
- The fuel consumptions are calculated based on the following fuel lower calorific values: LNG: 40.6MJ/m³ (N) Fuel oil A: 42.7MJ/kg, density0.86g/cm³ Propane: 93.7MJ/m³ (N), 46.4MJ/kg Kerosine: 43.5MJ/kg, density0.80g/cm³ Butane: 118.9MJ/m³ (N), 45.7MJ/kg

5. As to fuel oil A specification, JIS Class 1, No. 1 fuel (sulfur content not to exceed 0.5 weight percent, kinetic viscosity 3.75 mm²/s (at 50°C) or less) should be used. 6. Install the gas piping so as to ensure a sufficient feed gas pressure, even while the boiler is running, stopped, or other gas equipment is being operated.

- Supply gas pressure: medium-pressure supply 7. The main unit of the boiler come with an economizer. Be sure to set the feedwater temperature to 50°C or higher.
- 8. If the feedwater temperature is high when, for example, collecting the drain water, fuel consumption may be reduced as the standard of actual evaporation 9. The diameter of the safety valve discharge outlet shown between parentheses applies piping for blowing outdoors.

Maximum combustion capacity (input) is computed based on the standard lower calorific value.
 In the case of LNG, low NOx burner specification (O₂ = 0% conversion value : 60ppm or less) is applied.

External dimensional drawing

*1. The type display is as follows

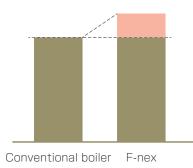
L T E - 2 0 0 2 🗆 M

•••N: LNG L: Propane/Butane

K: Kerosine/Fuel oil A

*2. Values inside the () are for the oil fired (Kerosine / Fuel oil A) boilers.

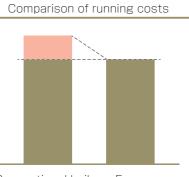
While utilizing existing facility, the steam boiler feedwater preheating system builds a highly efficient system environment.


F-nex demonstrates a great performance in systems whose drain recovery rate is relatively low, such as food and confectionery related systems, and builds small- to large-scale highly efficient systems for various industries, business types and scales. This system heats feedwater of the steam boiler with the heat pump unit that is able to extract more heat energy with less electric energy.

The most appropriate heat source equipment can be selected according to various facility scales, realizing improvement in the system efficiency.

Highly efficient boiler evolves into highly efficient boiler system

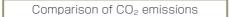
The efficiency of the combustion type boiler itself has already been improved to the highest level. F-nex, which utilizes a combination of a highly efficient heat pump and conventional boiler system, evolves into a highly efficient boiler system.

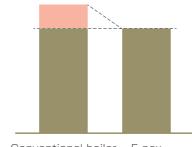

Comparison of highly efficient systems

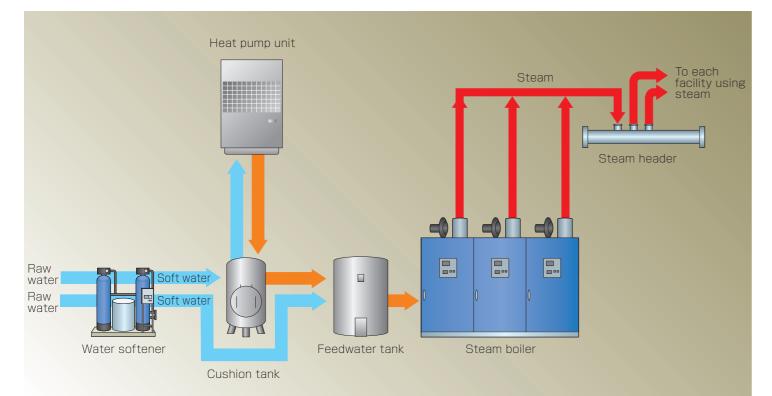
Improves daily running costs

Heating low-temperature feedwater by its own steam causes a large energy loss.

F-nex supports the sensible heating range up to 60°C to enable the facility to improve its efficiency.




Conventional boiler F-nex


Reduces CO₂ emissions, contributing to improvement of the environment

The electric type heat pump technique realizes over three times higher efficiency than that of the combustion type. In addition to this, it reduces CO₂ emissions and provides eco-friendly energy.

Conventional boiler F-nex

